SUSTAINABILITY STARTATHON

COUNTRY NAME - MYANMAR TEAM - ECOVATION CREW

> Mr. Hein Htut Aung Ms. Eaint Phoo May Ms. Kyaw Sandar Win Ms. Shin Thant Shwe Eain Ms. Theint Thinzar Htet

From Myanmar Noble University

Team Ecovation Crew from Myanmar Noble University

Ms. Eaint Phoo May

Mr. Hein Htut Aung

Ms. Shin Thant Shwe Eain

Ms. Kyaw Sandar Win

Ms. Theint Thinzar Htet

Problem Statement(!)

Access Disparity

Lack of electricity in 29,604 villages in Myanmar hinders education and business opportunities.

Environmental impact

Reliance on diesel generators in rural and remote areas leads to high carbon emissions and environmental damage.

Economic Viability

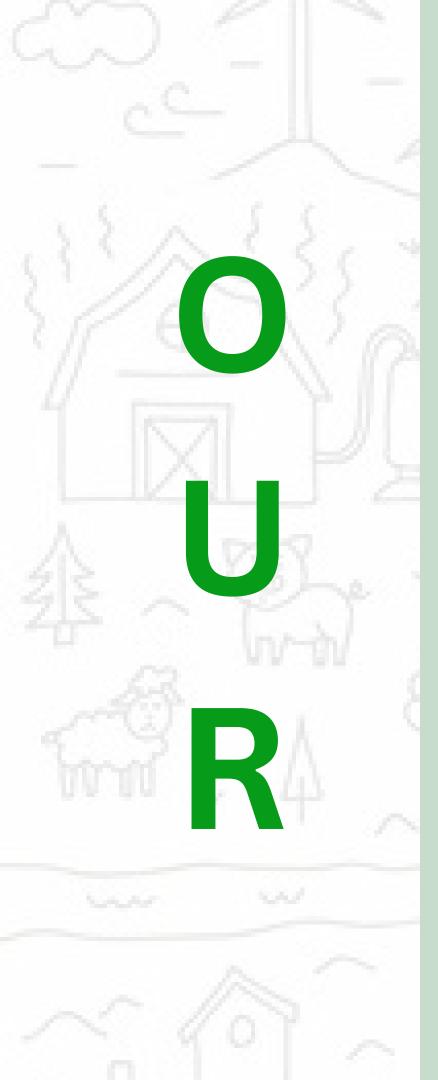
Table of contents,

Problem statement

Project Objectives

Targeted Market

Financial Plan


Risks and solutions

Uniqueness of the project

Project Deliverable

Benefits

Feasibility and Opportunities

How is our 'sap: (Arr) project' gonna solve this problem?

and

201 W

SMART Objectives

Measurable

Achieve 100% renewable and clean energy generation for these households through a hybrid system including a biomass incinerator and biogas digester.

Directly contribute to the seventh Sustainable Development Goal by ensuring access to affordable, reliable, and sustainable energy for the target communities.

Specific

Provide off-grid electricity to 1,000 households in a village in the Ayeyarwaddy region of Myanmar.

Attainable

Implement the hybrid energy system within 2 years and a budget of 800,000,000 MMK leveraging local agricultural waste for biomass and biogas production.

Relevant

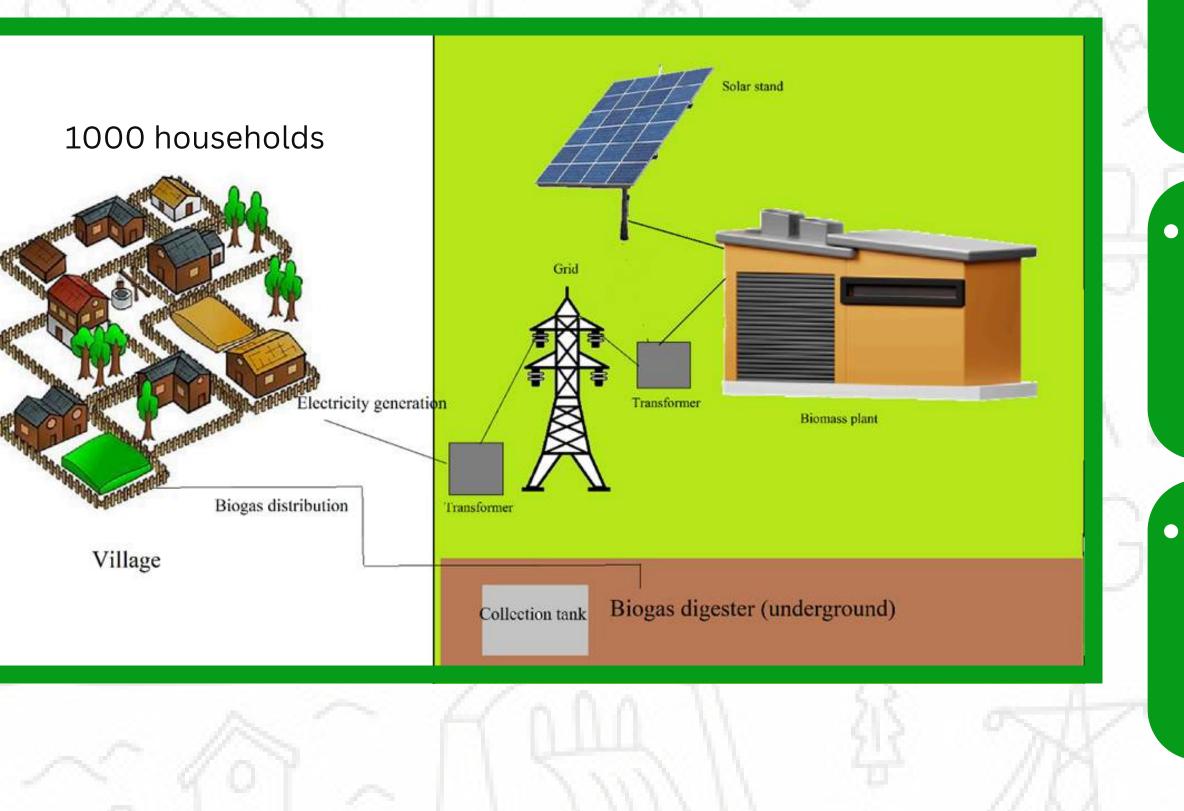
Time Bound

Complete the installation and operationalization of the hybrid energy systems in all targeted villages within 2 years.

Targeted Market

Location

A village of 1000 households in the Ayeyarwady Region Source


A great source of agricultural waste like rice husk for biomass Electricity Demand

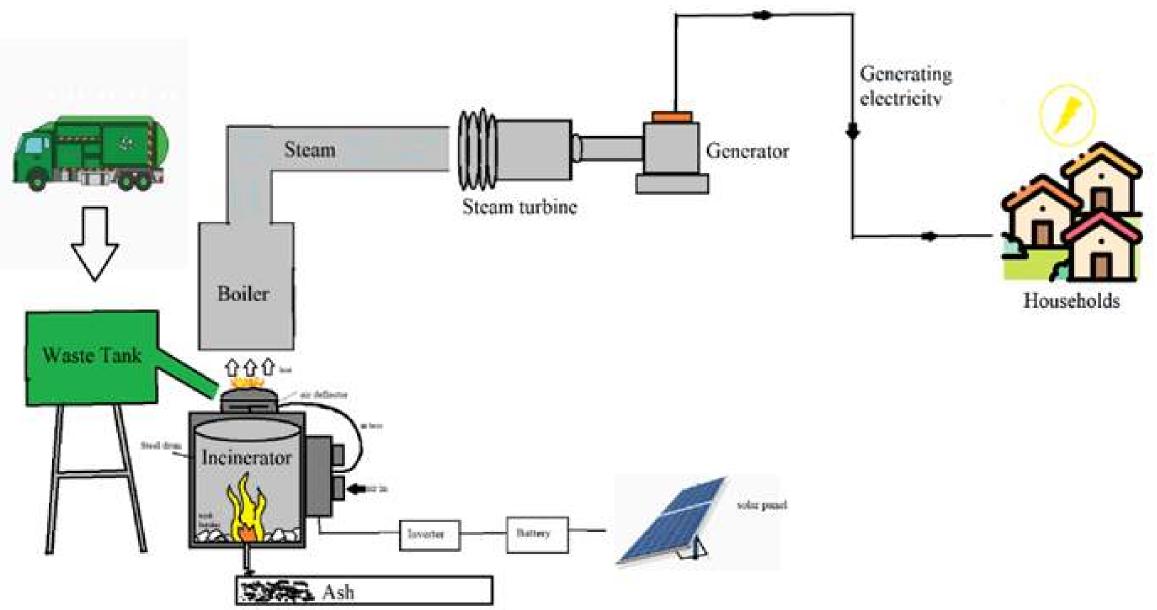
High

Profitability

Can provide revenue to break even in a year and sustainable profitability

Project Deliverable

Hybrid Project


 A hybrid electricity generation consisting of a biomass incinerator and a biogas digester in an open field


 Provide a sustainable and reliable source of energy to rural villages by integrating biomass and solar power technologies

 Leverage abundant local resources such as agricultural waste and human waste to generate electricity and energy for cooking

- The biomass component involves the installation of a central incinerator that burns organic waste to produce steam, which then drives a turbine connected to a generator, converting thermal energy into electricity. The incinerator's design was inspired by the SMART ASH incinerator by Elastec.
- No smoke, no smell, no pollutant emitted
- To generate 1500 kWh per day for
 1000 households, about 360 kg of
 agricultural waste will be burnt in the
 incinerator each day.

Biomass incinerator

Inspired technology by Elastec

- This is the portable SMART ASH Incinerator.
- For our project, the incinerator will be medium-sized.
- The function and the technology are inspired for less damage on the environment.

Process flow of biomass incinerator

Battery

- Function: Stores
 electricity generated
 from solar panels.
- Inverter: Converts DC
- from the battery to AC

Biomass incinerator

- Function: Burns trash (biomass) to generate heat.
- Air Inlet: Supplies air to support combustion.
- Output: Produces heat used to generate steam.

- Function: Generates
 electricity from solar energy.
- Output: Electricity at 480 volts for the incinerator

Boiler

- Function: Uses heat from the incinerator to produce steam.
- Output: Steam is directed to the turbine.

 \mathcal{O}

Steam turbine

- Function: Uses heat from the incinerator to produce steam.
- Output: Steam is directed to the turbine.

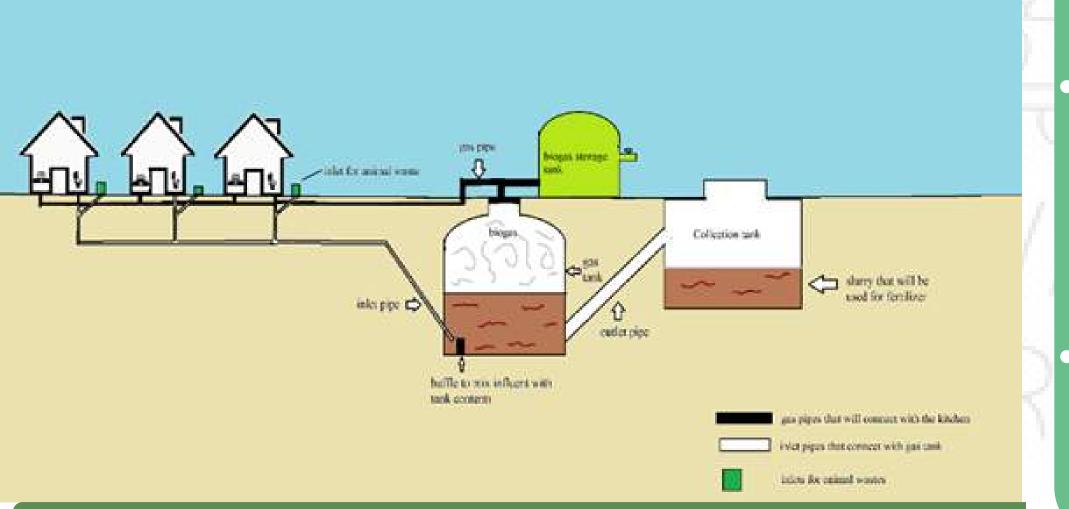
Sufficient electricity generation-

Waste Production

Electricity Generation

To generate 1500 kWh per day for 1000 households, about 360 kg of agricultural waste needs to be burnt each day

Surplus Waste


- With 2500 kg of waste produced and only 360 kg needed for electricity. It will be used for additional electricity generation

• Rice fields: 5-10 tons per day. • Wheat fields: 3-6 tons per day. • Sugarcane fields: 1-2 tons per day. • Maize fields: 2-4 tons per day.

Agricultural waste

Approximate agricultural waste from fields in the Ayeyarwaddy region is mentioned below. It would be used for burning to generate electricity if the waste from households could not be collected for several reasons.

Biogas Digester

The biogas digester converts human waste from the toilets in the villages and animal manure into biogas

For 1000 households, it would be 300 cubic metres (0.3 cubic metre*1000 households).

Can be used for cooking and heating. According to the statistics, the average amount of biogas a household requires is 0.3 cubic metres.

Process flow of biogas digester

Waste collection for households

• Pipelines: Gravity-based or pump-assisted pipelines are used to transport waste from the sanitary systems to a local collection tank.

Local collection tanks

• Intermediate Tanks: These tanks collect waste from nearby households before being pumped to the central mixing tank. These tanks help manage waste flow and reduce the burden on the main pipeline.

Pumping system

• Pumps: Submersible or surface pumps are installed in the local collection tanks to move the waste through pipelines to the central mixing tank. Pumps are chosen based on the distance and elevation differences between collection tanks and the central digester.

Baffle to mix

• Effluent Treatment: The liquid effluent from the digester is treated to remove pathogens before being released into the environment or used for irrigation.

Biogas digester

- Anaerobic Digestion: Waste from the mixing tank enters the biogas digester, where anaerobic bacteria break down the organic material, producing biogas (methane) and digestate (liquid fertilizer).
- Gas Collection: The produced biogas is collected at the top of the digester and transported via gas pipes for storage or direct use.
- Digestate Outlet: The digestate is periodically removed and can be used as a fertilizer for agriculture.

Wastewater and efflument management

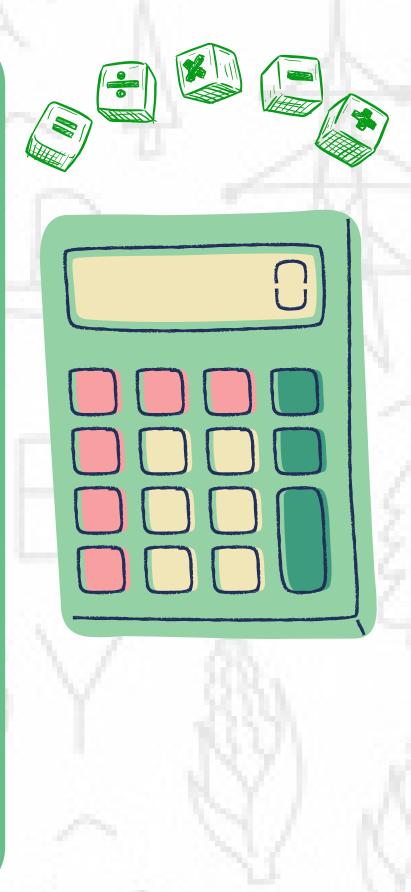
• Effluent Treatment: The liquid effluent from the digester is treated to remove pathogens before being released into the environment or used for irrigation.

Biogas storage tank

• Energy Use and storage: The biogas can be used for various purposes such as cooking and heating. The excess gas can be stored in the storage tank.

Calculation for biogas production from human waste

Average Human Waste Production:


o Each person produces approximately 2 litres of human waste per day.

- o Assume an average household size of 5 people.
- o Daily waste per household: 5 people×2 litres/day=10 litres/day
- o For 1000 households: 1000 households×10 liters/day=10000 liters /day

Calculating Biogas Production Biogas Yield from Human Waste: o On average, 1 cubic metre (m³) of biogas can be produced from 25-30 litres of human waste. o Using the average value of 27.5 litres per 1 cubic metre of biogas

Daily Biogas Production:

o When waste for 1000 households of 10000 litres/day is divided by 27.5 litres per 1 cubic metre, 363.63 cubic metres of biogas will be produced in 1 day.

Calculation for biogas production from animal waste

5

Biogas production from animal waste

On average, a medium-sized animal like cows produces 10 kg of dung per day—enough to produce 0.5 cubic meters (m3) of biogas.

Estimation

Supposing there are 100 cows in the village Biogas production from animal waste would be 50 cubic meters (number of cows 100* 0.5 cubic metres of biogas)

Total biogas production

Human waste = 363.63 cubic metres Animal waste = 50 cubic metres Total biogas production = 413.63 cubic metres

Providing biogas for households

According to the statistics, the average amount of biogas a household requires is 0.3 cubic metres. For 1000 households, it would be 300 cubic metres (0.3 cubic metre*1000 households).

Adequate biogas production

B Pras

62895252

Biomass incinerator and boiler	2500 lakh MMK			
Stream turbine and generator	400 lakh MMK			
solar panels, battery storage, and inverters	1000 lakh MMK			
Biogas digester and piping	2000 lakh MMK			
Civil works and electrical infrastructure	1000 lakh MMK			
Engineering and design services	200 lakh MMK			
Installing and regulatory compliances	900 lakh MMK			
Total	8000 lakh MMK			

Financial Plan (Initial Installation Costs)

Monthly Costs

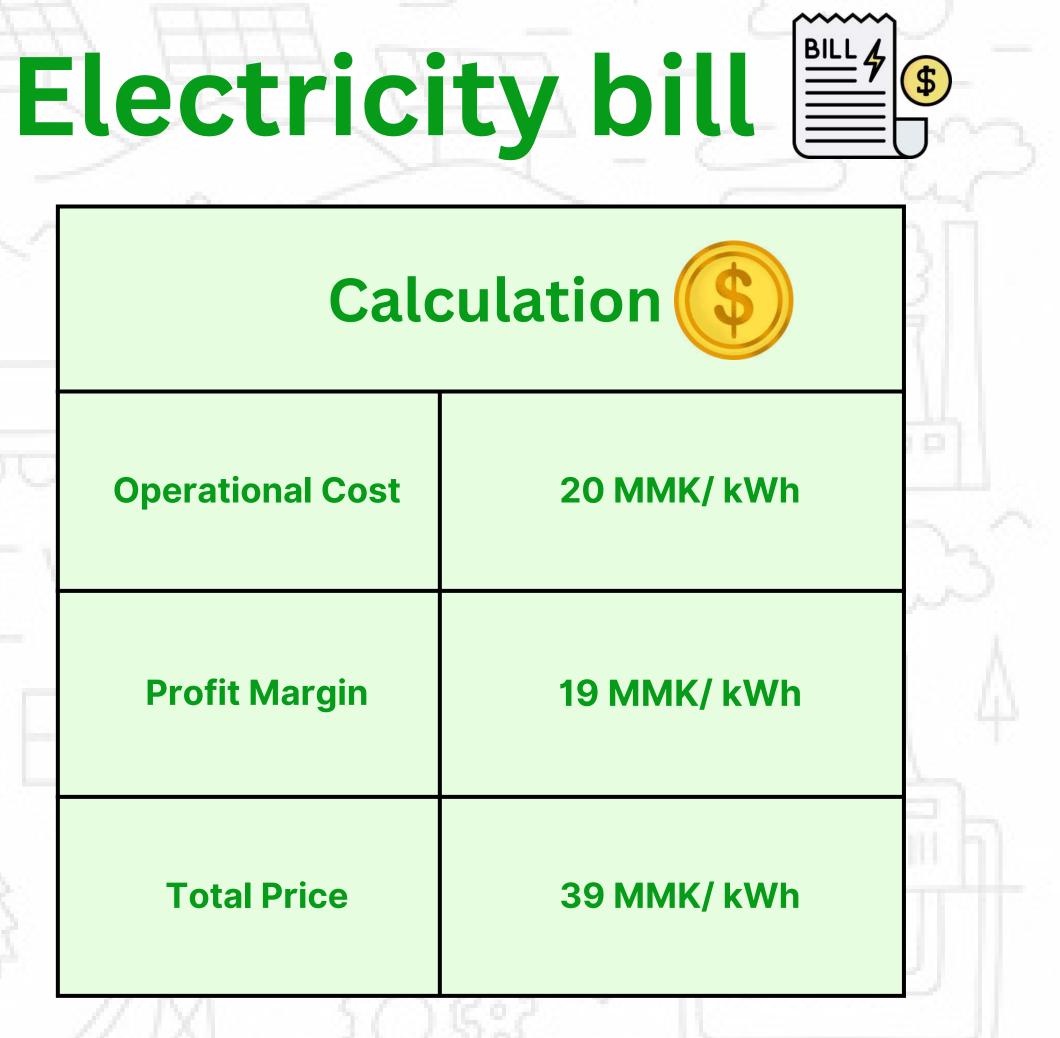
Miscellaneous 50 lakhs MMK 41.7%

Total costs 120 lakhs MMK

> Maintenance 20 lakhs MMK 16.6%

Labour 50 lakhs MMK 41.7%

Revenue Streams



Operational Cost

A household uses 45 kWh in a month. Therefore, each household has to pay 1755 MMK per month. The revenue for 1000 households would be 1,755,000 per month.

Profit Margin

Total Price

Biogas sales

1 cubic meter of biogas - 600 MMK

Since a household uses 0.3 cubic meters daily, it will be 180 MMK daily.

For a month, a household will pay 5400 MMK.

For 1000 households, revenue generation will be 5,400,000 MMK.

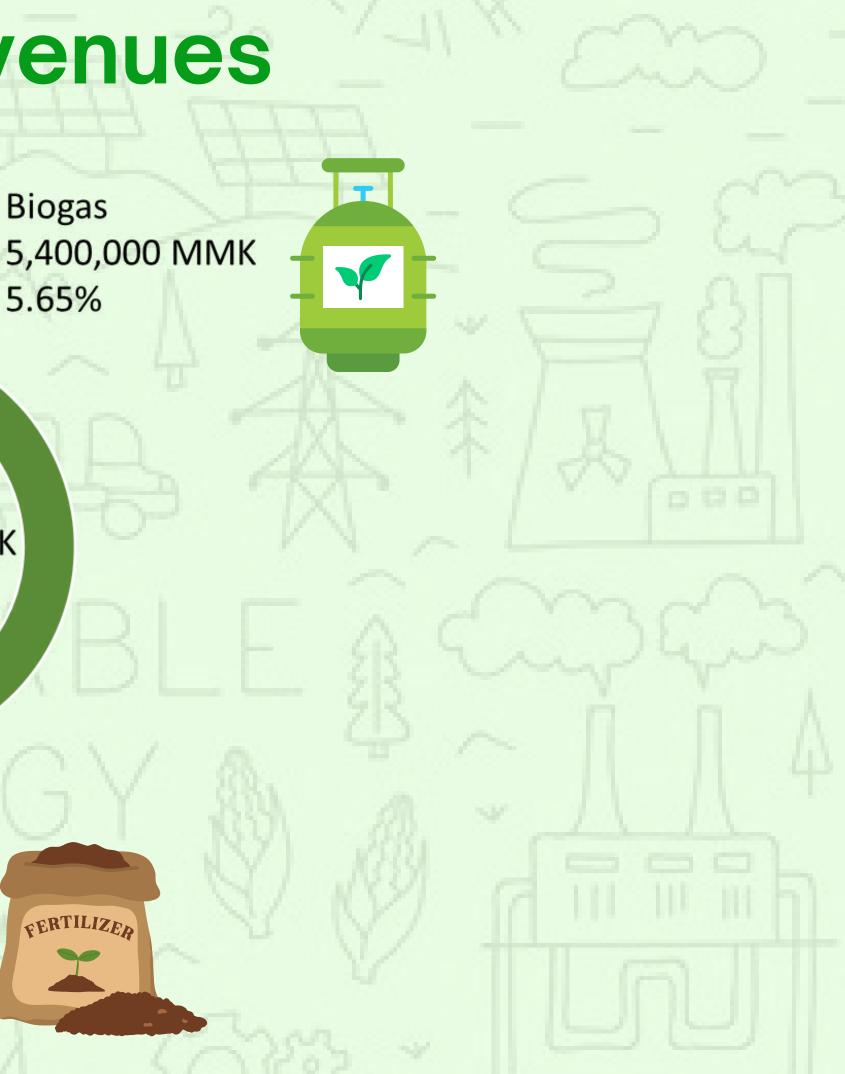
used as fertilizer.

87,615,000 MMK.

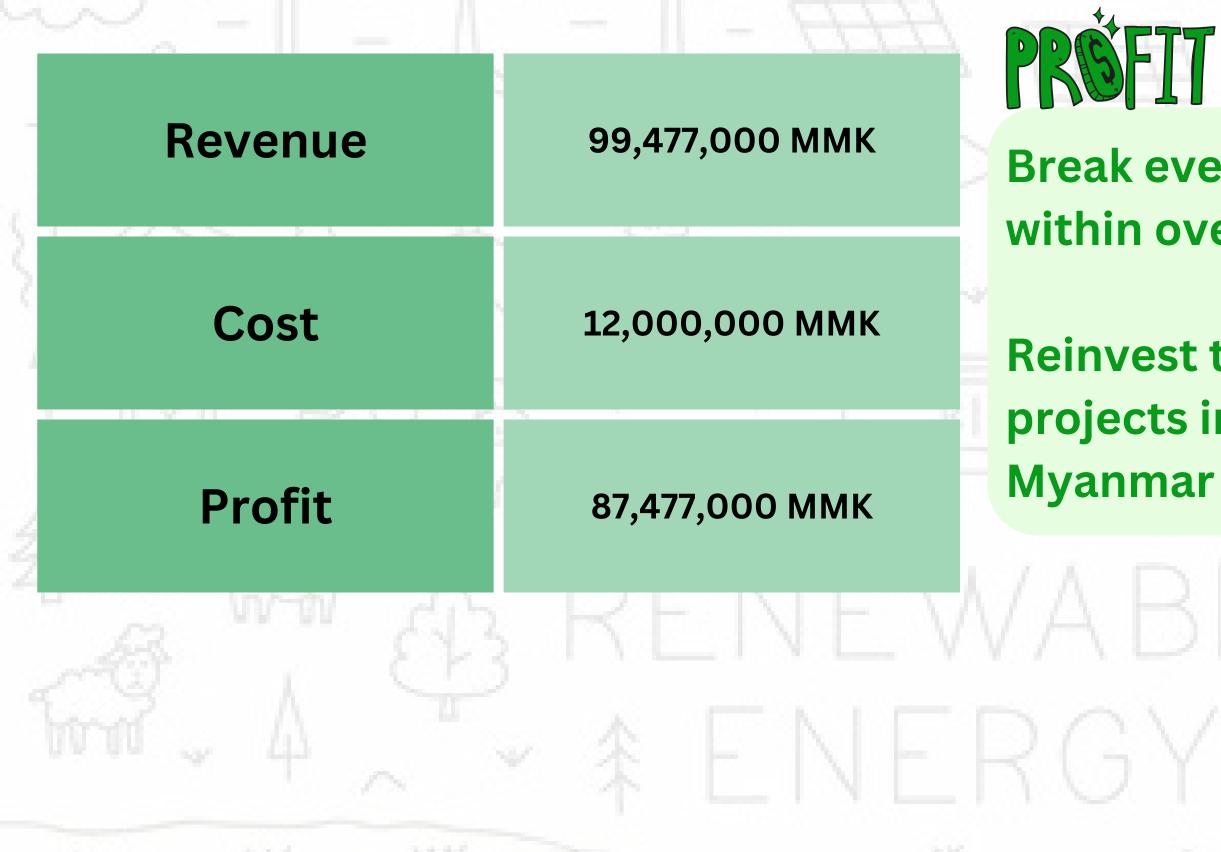
Fertilizer sales

- The slurry from the biogas digester produces 6490 kg per day, which can be
- 1kg of fertilizer will be sold at 450 MMK.
- Thus, revenue for 1 month will be

Monthly Revenues


Electricity 1,755,000 MMK 1.85%

Biogas 5.65%


Total 94,770,000 MMK

Fertilizer 87,615,000 MMK 92.5%

Monthly Profit

l In

Break even the installation costs within over a year

Reinvest the profit in future projects in other regions of

Benefits

Providing 24/7 electricity

Enhancing the living standards, economic growth, and education

Tackling the waste problem, having a positive impact on enviornment

Affordable, clean, renewable, and reliable energy

sharing sessions

How do we distinguish ourselves from others?

If others choose SDG 7, we share the same goal, but what sets us apart is our innovative fusion of biogas and biomass.

The top players in the bioenergy sector

These companies are from India, the UK, and the USA leading in the bioenergy sector. However, there are very few bioenergy initiatives in Myanmar.

Orsted

Affordability

Our 'Arr' Project

Every 1 unit is 39 kyats Price does not increase per unit.

The first 30 kWh - 35 kyats Price increases per unit afterwards

Feasibility and opportunity for future projects

G Abundant sources of biomass

Biomass energy is predominantly derived from wood fuel and agricultural wastes, such as cotton and pigeon pea stalks, sugarcane, rice straws, rice husks, sesame stalks, and palm leaves.

Potential for biomass energy market

Table 13: Actual and Projected Energy Production by Source of Energy (ktoe)

Year	Coal		Crude Oil		Natural Gas		Hydro		Biomass		Total	
	Base Case	High Case										
1980	136	136	368	1,368	286	286	30	30	7,572	7,572	9,392	9,392
1990	49	49	762	762	659	659	103	103	9,021	9,021	10,594	10,594
2000	72	72	1,055	1,055	1,068	1,068	163	163	9,175	9,175	11,533	11,533
2010	446	312	2,852	2,870	960	982	1,281	1,570	10,069	10,099	15,618	15,583
2020	491	363	4,150	4,372	1,054	1,133	2,184	3,217	11,122	11,198	19,011	20,283
2030	551	512	5,871	6,603	1,244	1,899	3,192	6,364	12,286	12,420	23,144	27,798

== 📣 ==

ktoe = thousand tons of oil equivalent.

Source: Ministry of Energy.

- Myanmar biofuel market sees potential growth in the future.
- **The demand for biofuel 12,286 ktoe** for the base case **12,420 ktoe** for the high case in 2030.
- **Reason** the rural population cannot afford fuels, such as kerosene, because of the rising domestic oil prices caused by the fluctuating prices of crude oil in world markets

BIOFUE

Conclusion

"Myanmar has the potential of better and brighter future with equal distribution of affordable, clean, renewable, and reliable electricity."

'ອອາະ (Arr) project'

Thank you very much!

References

- Eawag, Sacher, N., Dumlao, M. I. R. & Gensch, R., 2014. Compendium of Sanitation Systems and Technologies. 2nd Revised ed. s.l.:s.n.
- Elastec, 2016. Elastec Smart Ash Portable Incinerator Portable Description, s.l.: s.n.
- Frontier, 2023. Back to the dark ages: Development interrupted in Ayeyarwady. [Online]
- Available at: https://www.frontiermyanmar.net/en/back-to-the-dark-ages-development-interrupted-inayeyarwady/
- [Accessed 3 July 2024].
- GGGI, 2016. Turning Bio-Waste to a Bio-Economy in the Ayeyarwady Delta. [Online]
- Available at: https://gggi.org/turning-bio-waste-to-a-bio-economy-in-the-ayeyarwady-delta/
- [Accessed 3 July 2024].
- GGI, 2024. About GGI. [Online]
- Available at: https://gggi.org/about/
- [Accessed 4 July 2024].

Khaing, U. M. f. E. a. E. U. W., 2018. Myanmar's growing electricity needs [Interview] (29 January 2018). Kyaw, H. et al., 2009. STATUS AND POTENTIAL FOR THE DEVELOPMENT OF RENEWABLE ENERGY MYANMAR, Mandaluyong: Asian Development Bank. Phyo, Z.W., 2019. Overview of Renewable Energy Supply, s.l.: s.n. wba-admin, 2023. Biogas Heroes. [Online] Available at: https://www.google.com/url?q=https://www.worldbiogasassociation.org/biogaspioneer-wins-prestigious-award-for-promoting-anaerobic-digestion-in-cameroon-andafrica/&usg=AOvVaw2AFnJ9P5jwGePrkDLixqz4&hl=en-US [Accessed 3 July 2024]. World Bioenergy Association, 2024. About us. [Online] Available at: https://www.worldbioenergy.org/about-us/ [Accessed 3 July 2024].